injective modules and prime ideals

thesis
abstract

محور اصلی این پایان نامه، r- مدولهای a – انژکتیو می باشد که آنها را به عنوان یک تعمیم از مدول های انژکتیو معرفی می کنیم. در ابتدا مدول های انژکتیو را معرفی کرده، سپس برخی نتایج مهم وشناخته شده مدول های انژکتیو را به مدول های a – انژکتیو تعمیم می دهیم. در ادامه رابطه بین مدول های a – انژکتیو و حلقه های نوتری را بررسی می کنیم. پس هدف کلی این پایان نامه این است که با بررسی انژکتیو بودن ایده آلهای اول بتوان آن را روی تمام ایده آلها توسیع داد و انژکتیو بودن حلقه های موضعی را بررسی کرد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

On Prime A-ideals in Mv -modules

In 2003, Di Nola, et.al. introduced the notion of MV -modules over a PMV algebra and A-ideals in MV -modules [5]. These are structures that naturally correspond to lu-modules over lu-rings [5]. Recall that an lu-ring is a pair (R,u), where (R, ⊕, ·, 0, ≤) is an l-ring and u is a strong unit of R (i.e, u is a strong unit of the underlying l-group) such that u · u ≤ u and l-ring is a structure (R...

full text

z-weak ideals and prime weak ideals

In this paper, we study a generalization of z-ideals in the ring C(X) of continuous real valued functions on a completely regular Hausdorff space X. The notion of a weak ideal and naturally a weak z-ideal and a prime weak ideal are introduced and it turns out that they behave such as z-ideals in C(X).

full text

Generalizations of principally quasi-injective modules and quasiprincipally injective modules

LetR be a ring andM a rightR-module with S= End(MR). The moduleM is called almost principally quasi-injective (or APQ-injective for short) if, for any m∈M, there exists an S-submodule Xm of M such that lMrR(m) = Sm ⊕ Xm. The module M is called almost quasiprincipally injective (or AQP-injective for short) if, for any s∈ S, there exists a left ideal Xs of S such that lS(ker(s)) = Ss ⊕ Xs. In thi...

full text

Injective Modules and Fp-injective Modules over Valuation Rings

It is shown that each almost maximal valuation ring R, such that every indecomposable injective R-module is countably generated, satisfies the following condition (C): each fp-injective R-module is locally injective. The converse holds if R is a domain. Moreover, it is proved that a valuation ring R that satisfies this condition (C) is almost maximal. The converse holds if Spec(R) is countable....

full text

Locally Injective Modules and Locally Projective Modules

Our dual notions “locally injective” and “locally projective” modules in Mod-R are good tools to study the relations between the singular, respectively cosingular, submodule of Hom R(M, W ) and the total Tot (M, W ). These notions have further interesting properties.

full text

On Max-injective modules

$R$-module. In this paper, we explore more properties of $Max$-injective modules and we study some conditions under which the maximal spectrum of $M$ is a $Max$-spectral space for its Zariski topology.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان فارس - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023